Metal-responsive promoter DNA compaction by the ferric uptake regulator

نویسندگان

  • Davide Roncarati
  • Simone Pelliciari
  • Nicola Doniselli
  • Stefano Maggi
  • Andrea Vannini
  • Luca Valzania
  • Luca Mazzei
  • Barbara Zambelli
  • Claudio Rivetti
  • Alberto Danielli
چکیده

Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth phase and metal-dependent transcriptional regulation of the fecA genes in Helicobacter pylori.

Balancing metal uptake is essential for maintaining a proper intracellular metal concentration. Here, we report the transcriptional control exerted by the two metal-responsive regulators of Helicobacter pylori, Fur (iron-dependent ferric uptake regulator) and NikR (nickel-responsive regulator), on the three copies of the fecA genes present in this species. By monitoring the patterns of transcri...

متن کامل

Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state.

Fur (ferric uptake regulator) protein is a DNA-binding protein which regulates iron-responsive genes. Recombinant Fur from the nitrogen-fixing cyanobacterium Anabaena PCC 7119 has been purified and characterized, and polyclonal antibodies obtained. The experimental data show that Fur from Anabaena dimerizes in solution with the involvement of disulphide bridges. Cross-linking experiments and MA...

متن کامل

Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor.

Nickel serves as a cofactor for various microbial enzymes including superoxide dismutase (SOD) found in Streptomyces spp. In Streptomyces coelicolor, nickel represses and induces production of Fe-containing and Ni-containing SODs, respectively, primarily at the transcriptional level. We identified the nickel-responsive regulator (Nur), a Fur (ferric-uptake regulator) homologue, which binds to t...

متن کامل

Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae.

Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur r...

متن کامل

The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator.

In wild-type Rhizobium leguminosarum, the sitABCD operon specifies a Mn(2+) transporter whose expression is severely reduced in cells grown in the presence of this metal. Mutations in the R. leguminosarum gene, mur (manganese uptake regulator), whose product resembles the Fur transcriptional regulator, cause high-level expression of sitABCD in the presence of Mn(2+). In gel-shift mobility assay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016